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A data transfer strategy applicable to overset simulations has been developed with
scattered data interpolation techniques. This approach applies a “cloud”-based radial basis
function algorithm in lieu of traditional trilinear mappings and the resulting data transfer
has no dependence on grid connectivity. Therefore it is ideally suited for the resolution
of general grid configurations and eliminates problems associated with orphan points. The
effectiveness of the data transfer methodology has also been demonstrated for application
with hybrid approaches involving multiple solvers operating on overlapping computational
domains. A diverse set of applications have been considered including a convecting vortex,
a turbulent ship airwake, and a wind turbine rotor in axial flow.

Nomenclature

α Radial basis interpolation coefficient
β Polynomial interpolation coefficient
∆s Isotropic grid spacing
∆t Simulation time step size
Φ Radial basis kernel, Φ(~x, ~xi) = φ(||~x− ~xi||2)
φ Radial basis function (RBF), φ(r)
ρ∞ Free-stream density
N Number of interpolation donor points
p Pressure
Q Number of polynomial coefficients
r Radial (Euclidean) distance, ||~x||
s Interpolant to an unknown function
u x-component of velocity
U∞ Free-stream velocity magnitude
v y-component of velocity
X Set of donor points
( )T Matrix transpose

I. Introduction

Within the aerospace community, many applications of interest require the prediction of the unsteady
aerodynamics of both lifting and bluff bodies moving in multiple frames of reference. State-of-the-art com-
putational fluid dynamics (CFD) requires an efficient means of handling the evolution of computational
domains with mesh motion, deformation, and/or grid adaptation. The Chimera overset method1,2 grew out
of this need for a general approach to efficiently model complex flows by combining solutions on composite
overlapping meshes. Each moving component is modeled by structured or unstructured body-fitted grids
that are overset onto one or more stationary background grids that model the remainder of the flow field.
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Additional solution steps include hole cutting to remove points outside the computational domain (i.e., in-
terior to solid boundaries) and interpolation to transfer the flow solution at non-coincident points between
overlapping meshes. This approach has been been readily applied to the analysis of moving grid systems
including rotorcraft, wind turbines, and store separation.3–5

The data transfer aspect of the overset solution entails calculating the solution at target locations known
as receptors based on the solution from source points known as donors. These donors may generally come from
one or more grids and are identified by a search procedure typically performed within additional software.
After donors are found, a general approach to obtaining the solution at receptors relies on isoparametric
mappings with trilinear basis functions. These are calculated with Newton’s method and are applicable to
both structured and unstructured grids.6,7 On a Cartesian or structured mesh, trilinear interpolants may
be directly evaluated because the computational and parametric spaces are topologically identical. This
approach requires a set of acceptable donor points to form an interpolation stencil which cannot always be
found. For instance, when adjacent grids have insufficient overlap or if significant disparities in mesh spacing
between grid levels exist, complete stencils of donor points cannot be formed and the associated receptors
become known as “orphan” points. As a result, solution fidelity may be compromised because the solution
at two levels of fringe points cannot be resolved to maintain high-order accuracy.8 To permit the solver to
continue, solutions at orphan locations are typically estimated by an averaging procedure.5,9, 10 The problem
of orphan points is exacerbated by relative mesh motion which can increase the number of orphans and/or
change their locations over time.

Two general mitigation approaches exist when orphan points are present. First, the grids may be re-
designed to improve the quality of mesh intersections. However, straightforward adjustments are not always
possible, especially when considering complex geometries, and grid refinement can significantly increase cost.
For example, a wing-store configuration studied by Power et al.5 had 0.5% of all cells orphaned; application
of an adaptive mesh refinement procedure eliminated all orphans with an increase in total cell count of 10%.
Alternatively, a dense interface grid may be added in the orphan region.5,11 These approaches require user
intervention and added cost, either in engineering hours or computational time.

As an alternative, cloud-based data techniques can provide a mapping between arbitrarily structured
data samples and are decoupled from solver type (e.g., unsteady Reynolds-averaged Navier-Stokes, vorticity-
velocity, or potential flow methodologies) and topology (Cartesian, structured, and unstructured). While
these approaches are well-established within other fields (e.g., computer graphics, digital elevation modeling,
or optical design) their application to CFD problems has been limited. Recommendations from a number
of authors have suggested that scattered data interpolation with radial basis functions (RBFs) is a general,
accurate approach12–14 and can also eliminate numerical errors due to orphan points in overset simulations.
Since donor points can be sourced from any location on any grid, the approach naturally precludes scenarios
involving a lack of sufficient donor points. These methods are especially attractive for overset data transfer
because:

1. They permit interpolation and extrapolation15 based on arbitrarily clustered clouds of points in any
dimensional space.

2. They have in general higher-order accuracy that can be increased by freely adding data points.

3. They are directly applicable to unstructured methodologies since the interpolant is decoupled from the
computational mesh, eliminating requirements on the spatial structure of the sampled data.

4. They can be readily applied to the problem of solution transfer in overset methods since they do not
require connectivity information.

In the same way that cloud-based techniques are applicable to overset methods, hybrid methods can
also benefit from improvements in data transfer. Hybrid approaches feature overlapping or non-contiguous
computational domains, with the primary difference being that the domains are resolved by different method-
ologies. The chosen solvers may emphasize different physics and operate with potentially different spatial
and temporal requirements. To obtain a coupled solution, solutions must be exchanged periodically between
solvers, typically at every iteration. Using this approach, substantial improvements in terms of both spatial
accuracy and solver efficiency have been recently achieved for a variety of flows including lifting and bluff
bodies.16–18
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II. Numerical Approach

A radial basis function (RBF) is a univariate function of Euclidean distance from a chosen center xc:

Φ(x,xc) = φ(||x− xc||2) = φ(r). (1)

An RBF interpolant based on a set of donor points X has the following form:

sf,X(x) =

N∑
j=1

αjΦ(x, xj) +

Q∑
k=1

βkpk(x), (2)

where s is the RBF interpolant of the function f evaluated at an arbitrary location x; αj and βj are the
interpolation coefficients to be determined; and xj are the RBF centers that coincide with the set of sampled
data X. pk is chosen to be a polynomial basis to ensure a unique solution to the interpolation problem.19

An additional constraint is placed on the function pk to ensure solvability of the interpolation system:14

N∑
j=1

αjpk(xj) = 0. (3)

Equations 2 and 3 are combined and solved as a linear system of equations:[
AΦ,X P

PT 0

]{
α

β

}
=

{
f

0

}
, (4)

where the submatrices are defined as:

AΦ,X = (Φ(xj − xk)) ∈ RN×N (5)

P = (pk(xj)) ∈ RN×Q. (6)

Solution of Eqn. 4 produces an interpolant that depends on both spatial coordinates and the local solution
field.

II.A. Data Transfer

The data transfer algorithms considered in the present work focus on two basis functions which are accu-
rate and robust. The thin-plate spline (TPS) function has been recommended for both interpolation and
extrapolation:20

φ(r) = r2 log(r), (7)

and the compactly-supported Wendland C2 (W2) basis function has been recommended in Refs. 21–23:

φ(r) =

(1− r)4(4r + 1), r ≤ 1

0, r > 1.
(8)

These functions are free from additional problem-dependent shape parameters, thus facilitating the imple-
mentation of these algorithms for a variety of applications. The derivation of the W2 function ensures
continuity up to the second derivative (i.e., it is C2 smooth).14 Since most CFD meshes have high levels of
resolution, the increased smoothness of higher-order functions within the Wendland Ck family of functions
(with k > 2) provides no added benefit24 and therefore is not presented. The prior efforts with these func-
tions have focused on applicability to non-coincident fluid-structure interfaces rather than applicability to
general data type interpolations. Costin and Allen23 applied the Wendland function only to interpolation
across non-matching Cartesian grid interfaces rather than unstructured overlapping grids.

When applying a compactly-supported RBF such as the Wendland C2 function, the region of influence
for a particular data point is dictated by a support radius that scales the independent variable. In Eqn. 8, the
radius r is normalized by the support radius so that the function is identically zero outside of the supported
region. Larger support radii will result in a smoother interpolated field,25 indicating that for fluid dynamic
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(a) Normal fringe point (b) Orphan point

Figure 1. Clouds of source points in the vicinity of orphan points. Filled black circles denote donors while square
symbols indicate orphans. The cell enclosing the receptor point is outlined on the black grid.

applications the choice of support radius is problem and grid dependent. Therefore a constant value for
the support radius was not explicitly specified a priori as commonly applied in literature23,26 but rather
was permitted to vary depending on the local mesh density as described by Ref. 27. This is accomplished
by translating and scaling the coordinates of the donor points so that the points enclosing the receptor lie
within a unit domain centered at zero.

Clouds of interpolation points are formed by first identifying the cell enclosing the receptor point or the
donor closest to the receptor if an enclosing cell cannot be located (in the case of orphan fringe points).
Using the cell nodes (or single donor) as the starting location, the set of donor points is formed by including
neighboring nodes. The cloud should include at minimum all nearest neighbors to the receptors point, e.g.,
the nodes of the enclosing computational cell.26 In practice however, this offered no appreciable improvement
over linear interpolation approaches,28 therefore an additional level of points from neighbors of these nodes
was also included in the cloud. To maintain feasibility in terms of computational cost, expanding the
neighborhood of points beyond a single level of surrounding nodes has not been considered. Some sample
clouds of donor points are illustrated in Fig. 1.

II.B. Treatment of Orphan Points

When applying a cloud-based interpolation method, the same approach to data transfer may be applied to
configurations both with and without orphan points. Since there is no requirement that the receptor point be
located within a particular cell (as with standard mapping techniques) or that the donor points are connected
(to form a stencil as required for polynomial-based techniques), points may be arbitrarily included in the
data transfer to compensate for a lack of resolution in the immediate vicinity of the receptor. In the current
implementation, donor points that are also fringe points are automatically removed from the interpolation
cloud. The size of the cloud is allowed to vary in size to accommodate receptor points with insufficient donors.
If the number of non-fringe donors is less than or equal to the number of points comprising a single cell
(a minimum requirement to maintain linear interpolation resolution28), additional donors are sourced from
neighbors of nodes already in the cloud until the minimum donor requirement is met. The selected cloud
of source points does not necessarily encompass the target point when considering orphans, thus requiring
extrapolation. However, the RBF data transfer algorithm applied to both interpolation and extrapolation
is identical and invisible to the user.

III. Computational Tools

The baseline numerical analysis that was selected for overset development is FUN3D,29 a fully unstructured,
unsteady Reynolds-Averaged Navier-Stokes (URANS) solver developed primarily at NASA Langley Research
Center. Numerical schemes implemented in the code are spatially second-order accurate with Roe upwinding
and temporally second-order accurate using multi-step backward difference formulas. FUN3D includes overset
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mesh capabilities for accurate resolution of complex geometries and multiple frames of motion, for example
in rotorcraft applications.30

Two auxiliary codes are included to provide overset capabilities to FUN3D: Suggar++ (Structured, Un-
structured Generalized overset Grid AssembleR) and DiRTlib (Donor Interpolation Receptor Transaction
library).9,31 Suggar++ handles grid transformations and hole-cutting, donor-receptor identification, and cal-
culation of interpolation weights. DiRTlib interfaces with the flow solver and uses the domain connectivity
information generated by Suggar++ to calculate interpolated values. For static meshes, Suggar++ performs
as a preprocessor to match donor points with receptor points, after which interpolation weights are calcu-
lated based on donor locations only. For dynamic meshes, Suggar++ is both a preprocessor and an iterative
routine operating within FUN3D. At each solver time step and subiteration (for time-accurate simulations),
DiRTlib retrieves the solution at donor points and updates the solution at fringe points. To provide a cloud
of source points for the scattered data technique, the standard donor search procedure has been modified
to return not only the cell nodes encompassing the receptor node, but the neighbors of these cell nodes as
well. Connectivity information is not required for the scattered data interpolation but has been utilized
for convenience to avoid nearest neighbor searches. The interpolation matrices are calculated prior to flow
solution, and matrix inversion takes place either as a preprocessing step for static meshes or on the fly for
dynamic meshes. The resulting data transfer depends on both donor locations and the local solution field.

For the hybrid simulations in the present work, the far field wake analysis is provided by VorTran-M,32

a three-dimensional volumetric wake solver developed by Continuum Dynamics, Inc. (CDI). VorTran-M
performs a direct numerical solution of the unsteady incompressible Navier-Stokes equations in vorticity-
velocity form. Velocities are computed at each step using a Cartesian fast multipole method. A discretization
of the governing equations is obtained by Toro’s Weighted Average Flux (WAF) algorithm and Strang spatial
splitting which explicitly conserves vorticity. The effects of numerical diffusion are controlled by the WAF
flux limiter. Solid bodies are not directly modeled but can be represented through solution coupling to
a near-body solver. The formulation has demonstrated high-resolution rotor wake predictions on low-cell
count grids when coupled to a variety of near-body solvers (Euler/RANS, structured/unstructured, octree
Cartesian, and overset) for a number of vorticity-dominated flows.33,34

IV. Evaluation Cases

Three different test cases have been considered in the present work. The first is the overset simulation
of an inviscid convecting vortex, a standard feature of many fluid dynamics problems. The second test case
is the overset calculation of a three-dimensional, turbulent ship airwake. Finally, a hybrid calculation of a
wind turbine rotor has been performed.

IV.A. Inviscid Convecting Vortex

A vortical disturbance was written in a form consistent with the non-dimensionalization scheme in FUN3D:35

u

U∞
= 1− C

U∞R

y − yc
R

exp

(
−r2

2

)
(9)

v

U∞
=

C

U∞R

x− xc
R

exp

(
−r2

2

)
(10)

p− pnorm
ρ∞U2

∞
= 1− C2

2U2
∞R

2
exp(−r2) (11)

r2 =
(x− xc)2 + (y − yc)2

R2
(12)

with a constant density ρ = ρ∞, free-stream velocity U∞, and pnorm = p∞ − ρ∞U2
∞. The vortex is centered

at (xc, zc) with a nominal core radius R of 1.0 and non-dimensional vortex strength C/U∞R of 0.02.
Overset simulations dependent upon linear interpolation perform data transfers with only the nodes of

the cell enclosing the target point. For this two-dimensional configuration, computational cells are triangles
and quadrilaterals that have been extruded to form volumes for the three-dimensional flow solver. Therefore
trilinear interpolation functions are applied in the standard overset implementation. For this linear approach,
the number of donor points is fixed by the element type of the donor cell regardless of the presence of orphan
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(a) Unstructured background grid with irregular cutout (b) Irregular patch grid

Figure 2. Overset grid systems for advanced overset investigations with orphan points (∆s = 0.2); outlined region
denotes the extent of the patch grid.

Figure 3. Sample modified overset grid configuration with orphan points shown as red square symbols.

points. In comparison, the cloud-based RBF interpolations are based upon a neighborhood of typically 23–24
nodes on average, nearly a four-fold increase. This indicates that most triangles are connected to nine other
nodes on average (numbering 12 nodes on a two-dimensional plane). In the presence of orphan points in the
configurations tested, the number of available donors decreases by 19–38% in this configuration. To increase
accuracy over linear interpolation, the point selection algorithm required that the number of donor points in
the cloud not be less than the number of nodes comprising a single cell. In this case, the minimum allowable
number of donors was six but the actual minimum number of points per cloud was ten.

Unstructured overset grid configurations with and without orphan points were created from the meshes
depicted in Fig. 2. For this evaluation, the mesh spacing was chosen to provide ten computational cells across
the vortex core. A configuration with orphan points were created by resizing the background grid to have
an approximately 20% larger cutout region. This reduces the size of the overlap region and transforms over
half of the fringe points into orphans due to the poor quality of donors. These are illustrated by the symbols
in Fig. 3. Since these orphan points cannot be adequately resolved under the original overset interpolation
paradigm, an effective gap in the computational grid is formed.

The vortex solution was initialized on the background grid (Fig. 2(a)) and advanced until the vortex con-
vected once through the patch grid (Fig. 2(b)), ending downstream on the background grid. Non-periodic
far-field boundary conditions were applied. At each time step, subiterations were performed until temporal
errors decreased by an order of magnitude. Calculations on both single and overset grid configurations re-
sulted in the flow fields illustrated by Fig. 4. The orphan-free overset solution preserves the same qualitative
features as the single-grid case, which exhibits minor dissipation due to the coarseness of the mesh (Figs. 4(a)
and 4(b)). If orphan points are present, linear interpolation includes averaging at the overset gap which dis-
sipates the vortex structure after passage through the second overset boundary (Fig. 4(c)). In comparison,
the cloud-based data transfer approach utilizing TPS or W2 interpolation (Fig. 4(d)) eliminates the uncer-
tainty at orphan locations arising from any averaging procedure. The RBF algorithm systematically includes
additional donors in the interpolation so that the local solution is adequately reproduced (Fig. 4(d)). The
W2 solution field has not been shown as it is visually indistinguishable from the TPS solution.

Conservation errors were calculated from instantaneous solutions for the trilinear and RBF interpolation
methods. The extent to which the conservation laws of fluid dynamics are satisfied were considered by
evaluating the net mass and momentum fluxes in and out of the computational domain; any deviation from
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(a) Single Grid

(b) Overset, no orphans

(c) Overset, with orphans and linear mapping

(d) Overset, with orphans and advanced mapping

Figure 4. A comparison of the vorticity field for a single-grid case, an overset case without orphans, and two overset
cases with orphans. Five solution snapshots have been super-imposed on top of each other.
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zero is considered conservation error. Romberg integration was applied to estimate the numerical fluxes
in the limit of zero grid spacing. For N = 2k + 1 equally spaced points where k is a positive integer, the
algorithm performs k iterations to remove error terms up to (but not including) O(1/N2k).36 To initiate
this procedure, the boundary solutions were collocated to provide a number of equally spaced points equal
to 2k + 1. The shortest integration path (with the fewest points and thus the highest theoretical error)
was at the upstream and downstream boundaries. On the evaluation mesh, these boundaries contained 81
points which were interpolated to 129 locations (for k = 7), resulting in an integration error on the order of
sO(∆s2k) ≈ 10−10 or lower.

The mass fluxes in and out of the computational domain were calculated with the Romberg technique.
The exact massflow has a non-dimensional value of 16.0, while the difference between the massflow leaving
and entering the computational domain is on the order of 10−7 or lower for all configuration without orphan
points (Table 1). Positive or negative values indicate that mass has been added or removed, respectively,
during transit through the overset grid system. The columns in Table 1 indicate the conservation error at the
beginning, middle, and end of the simulation when the vortex is located on the background or patch grids
in Fig. 2. When orphan points are present, error in massflow is initially an order of magnitude lower when
the data transfer is performed with a cloud-based approach. Moreover, the RBF interpolation maintains the
same level of massflow error while trilinear interpolation errors increase by two orders of magnitude over the
course of the calculation.

Table 1. Net mass flux through the computational domain when the convecting vortex is at different locations in the
overset grid configuration.

Orphans Initial Bkg. Patch Final Bkg.

Trilinear Interpolation 1.36× 10−8 −4.85× 10−7 −1.21× 10−8

Thin-plate spline −1.34× 10−9 −4.16× 10−7 7.87× 10−7

Wendland C2 −9.87× 10−9 1.98× 10−8 −3.82× 10−7

Trilinear Interpolation x −1.10× 10−5 6.39× 10−6 −7.49× 10−4

Thin-plate spline x 2.59× 10−6 −1.36× 10−6 −4.07× 10−6

Wendland C2 x 2.50× 10−6 −1.27× 10−6 −3.75× 10−6

The conservation errors in mass, x-momentum, and z-momentum on the orphan configuration are plotted
for the duration of the simulation in Fig. 5. For all three quantities, the error on the single grid is of the
order 10−7, which is greater than the error in the numerical integration and therefore significant. Errors are
introduced in the overset simulations when the vortex is in the vicinity of the overset interfaces at x ≈ −6
and x ≈ 6. These errors appear as local maxima in the computed net flux, with double peaks appearing
prominently at x ≈-9, -5, 6, and 9 in Figs. 5(a) and (c). These peaks correspond to the passage of the front
and rear of the vortex core where swirl velocity and velocity gradients are at a maximum.

The mass conservation error returns to the approximate unperturbed level at x ≈ −4 after the vortex
core has crossed from the background onto the overset patch grid. The vortex exiting the patch to the
background grid through the second set of fringe points (beginning at x ≈ 4) has consistently higher error

Table 2. Cost in terms of averaged wallclock time per step for the convecting vortex evaluation case.

Case Method Fringes Avg Cost /

Subiters. step [s]

Baseline overset Trilinear 1,894 8.87 2.1718

configuration TPS 1,894 9.02 2.3416

W2 1,894 9.02 2.2868

Overset configuration Trilinear 884 36.2 4.6648

with orphans TPS 2,036 37.1 5.2125

W2 2,036 36.0 5.1956
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(a) Mass

(b) x-Momentum (c) z-Momentum

Figure 5. Calculated net flux through the outer boundary of the computational domain for the inviscid convecting
vortex test case.
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than the passage through the first set of fringe points. While the fluxes in both the linear and advanced
overset simulations display the same trends over time (or as a function of vortex position), applying an RBF
interpolation technique does not simply scale the errors. For instance, the large increase in conservation
error is accompanied by a delayed return to the unperturbed level in all three quantities, most notably in
the streamwise momentum (Fig. 5(b)). In addition, the mass and x-momentum fluxes have not returned to
initial levels even at the end of the simulation (Figs. 5(a) and (b)).

The cost of simulating each of the vortex cases on a single processor is summarized in Table 2. For the
cases without orphans, the cost increase associated with applying RBF interpolation was negligible, on the
order of 0.1 seconds of wallclock time per iteration. With orphan points in the grid configuration, the linear
overset approach applies an averaging procedure whereas the RBF approach interpolates all fringe points in
the same manner thus adding cost. However, the increase in cost primarily stems from the increase in the
number of subiterations required to attain temporal convergence.

IV.B. Ship Airwake

Figure 6. Geometries for the SFS and SFS2 configurations with dimensions in feet, from Ref. 37.

Maritime air vehicles operating from or near naval vessels typically encounter complex vortical structures
shed from the bow and other ship structures such as hangars, decks, turrets, cables, and parked air vehicles. A
helicopter trying to land on a ship deck aft of a hangar may have to descend through a shear layer emanating
from the roof of the hangar or interact with a region of recirculating flow in the hangar wake. An international
collaborative effort38 has led to the development of a generic ship model known as the “simple frigate shape”
(SFS) which has been extensively studied. A later iteration of this generic model developed by the Technical
Co-operation Programme to allow standardized study of ship topside aerodynamics37 is known as the “simple
frigate shape 2” (SFS2). The SFS2 introduced a more realistic, streamlined bow geometry (Fig. 6) and has
since superseded the SFS. New wind tunnel results of the SFS2 configuration have been obtained by the
U.S. Navy from the Naval Surface Warfare Center Carderock Division (NSWCCD) and are available for
additional validation. Recent efforts have studied a full-scale SFS2 in free air in addition to a 50th-scale
model in the NSWCCD test section.39 The current work utilizes the same computational grids and simulates
70.6 ft/s headwind conditions at a computational time step equal to 0.0005 s per step, corresponding to the
experimental sampling rate. The overset approach permits simulation of these conditions using identical or
similar grids as the previous single-grid simulations that modeled a ship in the NSWCCD test section. After
creating a background grid and a near-ship grid, a variety of operating conditions (e.g., at different headings
and/or with ship motion) may be simulated without the need to generate additional computational grids,
thus facilitating a parametric analysis. The ship is modeled with viscous surfaces and the far field is modeled
with a Riemann invariant condition. The sea boundary is considered to be part of the far field, neglecting
the moving interface between the air and water.

Free-air grids were created from an existing grid which modeled the SFS2 in the NSWCCD wind tunnel
test section39 with point clustering on the viscous floor, ceiling, and side walls removed. Since a URANS
simulation is able to provide large quantities of flow-field data not available from experiment, a single grid
configuration was created for reference as a best possible solution to compare with the overset solutions. The
free-air overset configuration includes a rectangular background grid extending outward 4.5 ship lengths in
the streamwise and lateral directions, and extending 0.75 ship lengths normal to the sea plane. The ship
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surface point distribution was kept identical in the single and overset grid configurations to maintain grid
quality (y+ < 1) and permit comparisons between grids. The specified far-field mesh spacings were also
kept the same. The single grid contained 2.7 million nodes and the overset configuration added 54,958 fringe
nodes at which interpolations are performed.

The flow field was sampled and averaged over the period of time required for the flow to traverse a
distance of one ship length. Figure 7 depicts averaged flow fields for the linear and RBF overset approaches.
For all calculations, the flow above the forward deck is identical. Differences in the flow are visible above
the rear deck near and above the height of the hangar. The ship features have been annotated on the single
grid solution (Fig. 7a), and bold contour lines in Fig. 7 indicate streamwise velocities between 0.7–0.8V∞.
These contours bracket the region with the most significant differences between linear and RBF overset
calculations. For comparison between the single and overset grid configurations, all solutions were collocated
onto an identical Cartesian mesh. In comparison with the single grid solution, average streamwise velocity
errors were 7% lower when applying thin-plate splines or Wendland C2 interpolation rather than trilinear
interpolation. Average normal velocity errors were 15% lower with TPS rather than trilinear interpolations
and 35% lower when interpolating with the W2 basis. Application of an RBF approach also reduced the
maximum error in both velocity components by 17–43%.

A flow recirculation region behind the hangar was observed in the original SFS experiment40 and is
characteristic of flows over a backward-facing step. The reversed flow above the aft flight deck (Fig. 7)
exhibits this behavior as expected. Flow conditions for this evaluation case correspond to a Reynolds
number based on hangar height of 1.82×105. High Reynolds number experimental data in the literature are
in the 5× 103 to 4× 104 range.41 Therefore the single grid and overset simulations have not been compared
to experiment. To estimate the locations at which the unsteady flow separates and reattaches on the flight
deck, skin friction contours were extracted from the ship surface. Contour lines at which the skin friction
was equal to zero were identified. The locations along the ship centerline where separation occurs have been
tabulated in Table 3, along with reattachment locations.

Table 3. Locations of separation and reattachment on the ship deck, normalized by hangar height.

Overset Method Separation Location Reattachment Location

Single Grid 0.5247 2.5646

Trilinear Interpolation 0.4763 2.6212

Thin-plate spline 0.5175 2.6099

Wendland C2 0.5171 2.6271

Under current flow conditions, the recirculation region spans over half the length of the flight deck. The
flow separates from the deck at a distance of approximately half the hangar height (h) and reattaches at
approximately 2.6h along the deck. The separation location calculated from the overset simulation with
trilinear interpolation differs from the single grid solution by 9%. In comparison, both RBF overset interpo-
lation methods predict a separation location within 2% of the single grid solution. In terms of reattachment
location, estimates with linear and cloud-based overset methods all differ from the single grid solution by
approximately 2%.

The ship airwake case was run in parallel on 256 processors. When applying RBF interpolation, the
average size of the interpolation problem based on the number of average donors increases eightfold from 8
to 32. In three dimensions, the number of donors is approximately 30% higher than the two-dimensional
vortex case, resulting in increased cost. However, parallel solver operation reduces the number of fringe
points per processor and as a result the added interpolation time is only 6% of the total solver cost per step
(Table 4).

IV.C. Wind Turbine Rotor

Forecasts predict that wind energy will meet roughly 20% of the United States national energy demand
by the year 2030.42 In order to harness the estimated 8,000 gigawatts of available wind resources, key
technological improvements improving both on- and off-shore power production must be realized including
larger rotors and advanced blade designs. These and other engineering advancements summarized in Ref. 42
motivate larger, more sophisticated analyses. In addition, unsteady interactions with the vortical rotor wake
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(a) Single Grid

(b) Trilinear Overset (color contours)

(c) Thin-Plate Splines Overset (color contours)

(d) Wendland C2 Overset (color contours)

Figure 7. Averaged contours of streamwise velocity for single and overset grid configurations, viewed from the port
side. In the overset cases, black line contours represent the single grid solution.

Table 4. Cost in terms of averaged wallclock time per step for the ship airwake evaluation case.

Overset Method Average cost/step [s]

Trilinear interpolation 18.8474

Thin-plate spline 19.9706

Wendland C2 20.0179
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cause undesirable noise and fatigue loading43 and can be challenging to accurately capture. The preservation
of all relevant flow features requires high cell-count grids to avoid numerical dissipation. Therefore, cost-
effective hybrid methods can offer an attractive alternative to traditional URANS calculations. In the current
hybrid approach, the near-body URANS solution performed by FUN3D is coupled to a vorticity-velocity
(V-V) analysis in the far field, VorTran-M. This eliminates the need to model the entirety of the flow field
with URANS. The near-body domain is overset onto an adaptive Cartesian background mesh, and overset
hole-cutting is replaced by a direct blanking procedure.44

For a fully-coupled solution between the near-body and wake solver, velocities are transferred from the
near-body mesh onto the background mesh at each solver iteration. These velocities determine the vorticity
within near-body cells on the background mesh, and the wake solution is advanced with the updated solution
from the near-body solver. After the wake solution is updated, the induced velocities from the entire vorticity
field modify the Riemann invariants on the URANS near-body boundary.28 While a continuous velocity field
can be recovered from the wake by the Biot-Savart law,33 transfer of the near-body solution to the wake
requires overset interpolation. As a demonstration of how the application of a cloud-based interpolation
strategy can increase simulation accuracy, the thin-plate splines and Wendland C2 radial basis functions
compared with trilinear interpolation.

A popular evaluation case within the wind energy community is the Unsteady Aerodynamics Experiment
(UAE) conducted by the National Renewable Energy Laboratory (NREL). The UAE Phase VI studied a
10 m, 20 kW wind turbine in the 80 by 120-foot wind tunnel at NASA Ames.45 This experiment demonstrated
a range of three-dimensional unsteady aerodynamic phenomena and has provided ample test data for the
international research community. In the current work, an isolated rotor at 0◦ yaw in a 15 m/s free stream
was evaluated on a reduced grid. An efficient analysis modeling a single rotor blade with rotational symmetry
was performed with the hybrid methodology. This approach provided a 70% reduction in the number of
computational nodes compared to overset simulations of a full upwind turbine.4 A time step size of 0.5◦

azimuth per step was applied with a temporal error tolerance of 5%, as recommended in prior work.4,18 The
baseline blade computational mesh included 4.5 million nodes (17.7 cells). The cost of the wake solution was
negligible compared to the near-body solution due to the efficient Cartesian mesh topology and a drastic
reduction in cell count, solving typically only O(105) cells. All simulations were compared after two full
rotor revolutions, after the mean rotor loads converged. Since the flow is stalled over most of the blade at
this operating condition, unsteady variations of 8% of the mean thrust and root flap bending were observed.
Variations in torque were within 15% of the mean torque value.

The blade pressure distributions for the different interpolation methods are plotted in Fig. 8 at select
radial locations along the blade to highlight the effects of applying different interpolation methods. Results
at other radial locations were not sensitive to the choice of data transfer method in this case. The greatest
variability is observed near to the blade root (r/R = 0.30). Increasing interpolation accuracy reduces the
overprediction in suction near the leading edge while simultaneously reducing the underprediction in suction
closer to the trailing edge. This has the overall effect of improving the accuracy of the pressure distribution
compared to experiment. While the integrated pressure difference remains unchanged (i.e., the normal
force at r/R = 0.3, Fig. 9(a)) these corrections are more strongly reflected in the section pitching moment
distribution (Fig. 9(b)). Further outboard at r/R = 0.63, the predicted pressure distributions are comparable
between all results. The reduction in pressure error is approximately 15% near mid-chord when interpolating
with the W2 function. Overall, the sectional pitching moment deviation from experiment measured in terms
of root-mean-squared (RMS) error is reduced by 32% and 19% when applying RBF interpolations (Fig. 9b).
Improvements are also observed in the section normal force distribution (Fig. 9a) when applying the W2
function, with RMS errors reduced by 14%.

The cost of applying a cloud-based RBF method in parallel computations is compared with trilinear
interpolation cost in Table 5 for varying numbers of processors. For small numbers of processors, the
workload per processor is relatively high; however, the cost of the interpolation alone account for only 0.5%
of the overall cost per iteration, regardless of interpolation method. As the number of parallel processes
increases, the solver cost per iteration decreases and the relative cost of the RBF interpolations increases. In
all cases, the interpolation cost for the cloud-based methods is less than 1% of the overall cost per iteration.
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(a) r/R = 0.30 (b) r/R = 0.63

Figure 8. Comparison of pressure coefficients at radial stations corresponding to experimental measurements for a
hybrid isolated rotor, calculated with linear and RBF interpolated wake velocities.

(a) Normal force coefficient (b) Pitching moment coefficient

Figure 9. Sectional airloads for hybrid isolated rotor calculations with linear and RBF interpolated wake velocities.

Table 5. Interpolation cost in terms of averaged wallclock time per step for the wind turbine rotor evaluation case.

Hybrid Interface Method # of Average interpolation Fraction of URANS

processors cost/step [s] cost/step

Trilinear interpolation 64 1.12 0.50%

128 0.57 0.48%

256 0.31 0.44%

Thin-plate spline 64 1.08 0.49%

128 0.95 0.83%

256 0.62 0.91%

Wendland C2 64 1.10 0.48%

128 0.96 0.80%

256 0.62 0.88%
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V. Conclusions

Cloud-based interpolation methods have been successfully applied to overset URANS and hybrid method-
ologies on general unstructured grids with minimal interface modifications. The effectiveness of the approach
when applying two different radial basis functions verifies the robustness of the algorithm for a variety of
flow fields. Specific findings include:

• The value of the cloud-based approach in overset configurations with orphans has been clearly demon-
strated. By enabling both interpolation and extrapolation, uncertainty associated with inadequate
grid overlap is eliminated. Transient massflow errors are reduced by up to two orders of magnitude for
a simple evaluation case of a convecting vortex. For more complex aerodynamics, the accumulation of
overset conservation errors may be more significant and the application of an improved data transfer
technique can increase solution fidelity without additional spatial or temporal refinement.

• The three-dimensional unsteady, separated flow field in the wake of a ship hangar demonstrated sen-
sitivity to the choice of interpolation method. Even though the overset boundaries were located ap-
proximately half a ship length away from the ship, radial basis function overset interpolation was able
to reduce errors in the averaged velocity field by up to 35% and improve predictions of flow separation
location on the flight deck by 7%. This indicates that for high-resolution computational grids, overset
errors may propagate from overset boundaries to distances on the order of the problem reference length.

• For the hybrid rotor simulation, the effect of the improved data transfer between the near-body and
the wake is most apparent near the blade root where the shed vorticity persists near the rotor for a
long period of time. Up to 32% improvement in pitching moment correlations with experiment with
the RBF interpolation method underscores the importance of accurate data transfer.

• For large simulations with node counts of O(106) or larger, the increased interpolation cost was 6%
for overset an simulation and less than 1% for a hybrid simulation. The added overset cost may be
reduced by optimizing and minimizing the amount of overlap between grids, which reduces the number
of data transfers required.
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